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a  b  s  t  r  a  c  t

Ligands  for  Toll-like  receptors  (TLRs)  are  known  to stimulate  immune  responses,  leading  to  protection
against  bacterial  and  viral pathogens.  Here,  we aimed  to examine  the  effects  of  various  TLR  ligands  on
the  development  of  Marek’s  disease  in  chickens.  Specific-pathogen  free  chickens  were  treated  with  a
series  of  TLR  ligands  that  interact  with  TLR3,  TLR9  and  TLR21.  In  a pilot  study,  it was  determined  that
TLR4  and  TLR21  ligands  are  efficacious,  in  that  they  could  reduce  the incidence  of Marek’s  disease  tumors
in  infected  birds.  Hence,  in  a subsequent  study,  chickens  were treated  with  lipopolysaccharide  (LPS)
as  a TLR4  and  CpG  oligodeoxynucleotides  (ODN)  as TLR21  agonists  before  being  challenged  with  the
RB1B  strain  of Marek’s  disease  virus  (MDV)  via  the  respiratory  route.  The  results  demonstrated  that  the
administration  of  LPS  or CpG  ODN,  but not  PBS  or non-CpG  ODN,  delayed  disease  onset  and  reduced  MDV
genome copy  number  in  the spleens  of  infected  chickens.  Taken  together,  our  data  demonstrate  that
TLR4  and  21  agonists  modulate  anti-virus  innate  immunity  including  cytokine  responses  in MD-infected
chicken  and this  response  can  only  delay,  but not  inhibit,  disease  progression.

© 2014  Elsevier  Ltd.  All rights  reserved.

1. Introduction

Marek’s disease (MD) is caused by an alphaherpesviurs named
Marek’s disease virus (MDV) [28]. MDV  enters the body through
the respiratory tract and it is transported to lymphoid organs by
macrophages and B cells [6,7]. The early cytolytic phase results in
B cell death, which occurs around 2–7 days post-infection (d.p.i.)
[11]. MDV  then infects activated T cells and enters its latency phase
at around 7–10 d.p.i. The time points in the present study were
selected based on the above model to represent different phases of
MDV  pathogenesis.

Immunity against MDV  is mediated by innate and adaptive
immune mechanisms. Among innate defense mechanisms, Toll-
like receptors (TLRs) play an important role in recognition of the
virus and elicitation of innate and adaptive immune responses
against the virus [2]. TLRs are pattern recognition receptors (PRR)
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that recognize conserved pathogen-associated molecular patterns
(PAMPs) [21] and trigger pro-inflammatory cytokine production
such as interleukin (IL)-1� and IL-6 and type I interferons [44].

A repertoire of TLRs orthologous to those of mammalian TLRs
has been described in chickens [24,32]. The avian orthologue of
TLR4 is required for the recognition of LPS [22], up-regulation
of interferon (IFN)-� [35,42] and increased expression of pro-
inflammatory cytokines in chickens [39,45]. TLR4 agonists can be
used prophylactically to elicit immunity against pathogens such as
influenza viruses in chickens or mice [27,41].

Bacterial and viral DNA has unmethylated CpG motifs that are
recognized by TLR9 in mice and humans [44], and by TLR21 in
chickens [10]. CpG ODN induces the expression of IL-1� and IFN-
� in avian macrophages [18] and stimulates the proliferation of
chicken B cells in vitro [47]. The induction of T helper (Th)1 immune
responses, characterized by expression of IFN-�, has been demon-
strated in neonatal chickens treated with CpG-ODN [31,40]. CpG
ODN has been used prophylactically to induce protective immunity
against Escherichia coli [16], Salmonella [43], and avian influenza
infections in chickens [42].

0264-410X/$ – see front matter © 2014 Elsevier Ltd. All rights reserved.
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Considering the ability of TLR agonists to induce immune
responses in chickens, the present study was conducted to test the
hypothesis that treating chickens with TLR3, 4 or 21 agonists can
confer immunity against MDV.

2. Materials and methods

2.1. Experimental animals

Specific-pathogen free chicks were obtained from the Canadian
Food Inspection Agency (Ottawa) and kept in Horsfal units placed
at the Isolation Unit of Ontario Veterinary College (University of
Guelph, Guelph, Ontario, Canada). Animals were euthanized by CO2
inhalation and procedures were approved by the institutional Ani-
mal  Care Committee.

2.2. TLR ligands

Lipopolysaccharide (LPS) from E. coli 0111:B4 and poly(I:C) were
purchased from Sigma-Aldrich Canada (Oakville, Canada). The syn-
thetic class B CpG ODN 2007 [5-CGTCGTTGTCGTTTTGTCGTT-3] and
non-CpG ODN [5-TGCTGCTTGTGCTTTTGTGCTT-3] [10] were pur-
chased from Eurofins MWG  Operon (Ebersberg, Germany). FimH
was kindly provided by Dr. Ali Ashkar (McMaster University, Hamil-
ton, Canada). All of the ligands used were re-suspended in sterile
PBS, pH 7.4.

2.3. MDV  infection

2.3.1. Virus strain
The very virulent (vv) MDV  strain, RB1B (passage 9) was used

to infect the birds via inhalation (provided by Dr. K.A. Schat, Cor-
nell University, NY, USA). Extraction and administration of cell-free
MDV  was done following the protocol described previously [12]
with some modification as described elsewhere [3].

2.3.2. Experimental design
Two independent trials were performed using 210 day-old

chickens in total. In the first trial, 4 day-old chickens (n = 100)
were treated with LPS (High dose: 500 �g/bird and low dose
100 �g/bird), CpG ODN 2007 (High dose: 10 �g/bird and low dose:
2 �g/bird), non-CpG ODN (10 �g/bird), FimH (high dose: 50 �g/bird
and low dose: 10 �g/bird), and poly(I:C) (400 �g/bird) via the intra-
air sac route (i.a.s.). The birds were challenged 24 h after TLR
administration by inhalation of cell-free RB1B strain of MDV  (using
a virus preparation containing 1280 pfu of MDV/ml). A group of
age-matched chickens were treated with un-infected skin extract
plus PBS (sham infected group). On 14 d.p.i., the chickens were
treated intra-muscularly (I.M.) with the same doses of TLR lig-
ands. In the second trial, 4 day-old birds (n = 110) were treated
with LPS (500 �g/bird), CpG ODN 2007 (10 �g/bird), non-CpG ODN
(10 �g/bird)) or diluent (PBS) via the i.a.s. route. The birds were
infected with RB1B 24 h after the treatment, as described above.
Similar to the trial 1, the birds were treated I.M with the same dose
of TLR ligand on day 14 post infection.

The chickens were monitored three times a day after infection
and scored based on the clinical signs such as ruffled feathers,
huddling, droopy wings and paralysis. Chickens showing each of
the first three clinical signs would receive a score of 1. Chickens
that suffered from paralysis for more than 48 h or had the cumula-
tive score of 3 based on other clinical signs had to be euthanized,
according to the University of Guelph Animal Care Committee reg-
ulations. In the first trial, all birds were euthanized on day 21
post-infection, regardless of the presence or absence of clinical
signs. After euthanasia, birds were necropsied and presence of
gross tumors and enlargement of the sciatic nerve were recorded.
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Fig. 1. The effects of TLR ligand treatments on tumor incidence in different
groups at 21 d.p.i. (first trial). On day 4 post-hatch, chicks were treated with LPS
(100–500 �g/bird), CpG ODN 2007 (2–10 �g/bird), non-CpG ODN (10 �g/bird), FimH
(10–50 �g/bird), poly(I:C) (400 �g/bird) or diluent via the intra-air sac route (i.a.s.).
Chickens were infected with RB1B via respiratory route on day 5 post-hatch. A group
of  birds received diluent but were not challenged with the virus. The treated birds
were also received the same TLR ligand I.M. on day 14 post infection. The data are
presented as the percentage of tumor incidence with eight biological replicates in
each group at 21 d.p.i.

The chickens that had at least one gross visceral tumor or had an
enlarged nerve were considered positive for MD.  Feather tips and
spleens were collected on 4, 10, and 21 d.p.i. In the second trial, 6
birds from each group were euthanized on day 4 and 10 d.p.i. and
the rest of the birds were euthanized upon manifestation of MD
signs (being on days 21, 27 and 28 d.p.i. in different groups) based
on the above scoring system.

2.3.3. Real-time RT-PCR
RNA extraction from spleen and lung samples, cDNA synthe-

sis and real-time RT-PCR were conducted as previously described
[1]. Real-time RT-PCR was  used to quantify the expression levels of
IFN-�, IFN-�, IFN-�, IL-1�, IL-18 and �-actin using the LC480 instru-
ment (Roche Diagnostics GmbH, Mannheim, Germany) [4,9,46].
MDV genome copy number was quantified by measuring MDV  meq
gene copies in 100 ng of DNA extracted from tissues as described
previously [5]. Cycling parameters were as previously described
[9,46].

2.4. Data analysis

LightCycler® 480 relative quantification software was  used for
calculating relative expression. The expression of each cytokine
was described relative to �-actin gene expression, which was  used
as the reference gene, in the same sample preparation. Data were
analyzed using ANOVA and comparisons were considered signifi-
cant at p ≤ 0.05.

3. Results

3.1. The effects of TLR ligands on mortality and tumor incidence
of chickens infected with MDV RB1B

The first trial was  conducted to screen a set of different TLR
agonists (CpG ODN, LPS, PolyIC and FimH) for their ability to
inhibit tumor incidence induced by MDV. In this trial, 83.3% of
RB1B inoculated-birds developed tumors on day 21 post-infection
(Diluent/RB1B group), while no tumor incidence was observed
in the control group (non-infected birds) (Fig. 1). The lowest
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Fig. 2. The effects of TLR ligand treatments on survival rate and tumor incidence (second trial). Birds were treated with LPS, non-CpG ODN, CpG ODN or the diluent on day
5  post-hatch and were challenged with RB1B via respiratory system 24 h later. Birds were euthanized based on the presence of clinical signs, especially paralysis, and the
survival  rate for each group was  calculated (a). The percentages of tumor incidence in different experimental groups are presented for day 21, 27, and 28 post infections. The
data  are presented as the percentage of tumor incidence in ten biological replicates in each experimental group (b).

tumor incidence (37.5%) on day 21 post-infection was noted in
the chickens which were administered with the high dose of LPS
(500 �g/bird) (LPS high dose/RB1B group), demonstrating that LPS
administration can reduce tumor incidence. The administration
of Poly(I:C), FimH, non-CpG ODN or CpG ODN only marginally
reduced tumor incidence compared to the non-treated group (Dilu-
ent/RB1B) (Fig. 1).

Based on the results of the first trial, certain ligands and doses
were selected. In the second trial, the birds received CpG-ODN, non-
CpG-ODN, LPS or PBS (diluent) prior to infection with RB1B and
birds were monitored for survival rate and tumor incidence. All
the birds receiving non-CpG-ODN or the diluent (non-CpG/RB1B or
diluent/RB1B groups) showed clinical signs of MD  by day 21 post-
infection and upon necropsy, they all had gross visceral tumors.
In contrast, on day 21 post-infection, no MD  clinical signs were
observed in the birds administered with LPS or CpG ODN. In
CpG/RB1B and LPS/RB1B groups, the birds remained free of clin-
ical signs until day 25 post-infection at which time the majority
of the chickens in these groups began to show clinical signs of
MD,  reaching the cumulative score of 3 at 27 and 28 d.p.i., respec-
tively. Therefore, they had to be euthanized. Upon necropsy, all the
birds were found to have gross visceral lesions consistent with MD
tumors (Fig. 2a and b).

3.2. Relative gene expression of cytokines and absolute
quantification of MDV  genome load in the lungs

In the second trial, we analysed the expression of IFN-�, IFN-�,
IFN-�, IL-1� and IL-18 in the lungs of birds from different exper-
imental groups (Fig. 3a–e). The results demonstrated that there
was no difference in the expression of IFN-� and IL-18 among the
groups at 4 and 10 d.p.i. IFN-� expression was up-regulated in
the LPS/RB1B and non-CpG/RB1B groups compared to the other

groups at 4 d.p.i. (p = 0.021). IFN-� expression was significantly
up-regulated in all groups at 4 and 10 d.p.i. compared to the dilu-
ent group (p = 0.015). IL-1� expression was  up-regulated in the
CpG/RB1B and LPS/RB1B groups at 4 d.p.i. compared to the other
groups (p = 0.016). MDV  genome load in CpG/RB1B (p = 0.002) and
LPS/RB1B (p = 0.05) groups was  higher on day 10 post-infection than
that on day 4 post-infection. However, there was no difference in
MDV  genome load among the experimental groups in the same
time point (Fig. 3f), suggesting that LPS or CpG ODN treatments did
not alter viral load in the lungs.

3.3. Expression of cytokines and quantification of MDV  genome
load in spleen (second trial)

In the second trial, cytokine expression was analyzed in spleens
of birds from different experimental groups (Fig. 4a–e). There was
no statistical difference among the groups in the expression of IFN-
�, IFN-� and IL-18 at 4 and 10 d.p.i. The expression of IL-1� in
CpG/RB1B, non-CpG/RB1B and LPS/RB1B groups was significantly
higher at 4 d.p.i. compared to other groups (p = 0.02). MDV  genome
load was significantly higher at 4 d.p.i. in non-CpG/RB1B and dilu-
ent/RB1B groups compared to other groups (p = 0.005) (Fig. 4f),
demonstrating that the administration of CpG or LPS reduces MDV
viral load in the spleen.

4. Discussion

TLR ligands have been employed as vaccine adjuvants or as
stand-alone prophylactic anti-viral compounds for control of viral
or bacterial infections. For example, LPS and FimH have been used
prophylactically against influenza virus in the mouse model and
have been shown to control morbidity and mortality caused by this
virus [1,38]. In chickens, LPS, CpG and poly(I:C) have been tested
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Fig. 3. Relative expression of IFN-�, IFN-�, IFN-�, IL-1�, IL-18 to �-actin in the lungs of birds from the second trial. The expression of the cytokines was calculated relative to
�-actin  in the lungs of birds treated with LPS (500 �g/bird), CpG ODN (10 �g/bird), non-CpG ODN (10 �g/bird) or the diluent and were challenged with RB1B via respiratory
route.  The data show the mean ± standard error of six biological replicates for IFN-� (a), IFN-� (b), IFN-� (c), IL-1� (d), IL-18 (e) at 4 and 10 d.p.i. (f) demonstrates MDV
genome copy number (using MDV  meq  gene) in the lungs. The data show the mean ± standard error of six biological replicates for each group at 4 and 10 d.p.i. “a” Denotes
statistical significance compared to other groups at the same time point. “b” Denotes statistical significance for one group compared to other time points for the same group.
Comparisons were considered significant at p ≤ 0.05.

for their efficacy as prophylactic compounds against bacterial or
viral pathogens. CpG-ODN can protect chickens against bacterial
pathogens such as E. coli [16] as well as viral pathogens such as
infectious bronchitis virus [13]. Furthermore, our group evaluated
the efficacy CpG-ODN, poly(I:C) and LPS against avian influenza
virus (AIV) infection in chickens and concluded that poly(I:C) was
the most effective TLR agonist for controlling AIV replication [42].
The present study investigated the efficacy of a series of TLR ago-
nists, including poly(I:C), FimH, LPS and CpG, to raise immunity
against MDV.

There were two trials in this study. In the first trial, we screened
different TLR ligands and doses to identify the optimal ligand and
the dose that could confer immunity against MDV. The doses used
in the first trial were chosen based on the results obtained from
previous experiments with these TLR ligands [1,16,27,30,40]. We
used a protocol for ligand treatments, which consisted of two
administrations, first via the intra-air sac route and the second
via the intramuscular route. The Intra-air sac route was  cho-
sen because we reasoned that elicitation of local innate immune
response in the air sacs can delay the entrance of the viral parti-
cles into the lungs. Importantly, in avian species, the inhaled air
passes through air sacs before entering the lungs [33], providing
a direct contact between air sacs and MDV. The I.M. route was
used for administering the second dose (day 14 post-infection)
because we reasoned that this time point corresponds to the end
of the latency phase and its reactivation. We  reasoned that this
may  be a relevant time for induction of systemic host innate
responses to disrupt the virus cycle and block the transformation
phase.

The second trial was  designed to replicate the results of the first
trial and also to provide further insights into the mechanisms of
protection. The results of the first trial revealed that treatment of
chickens with high dose of LPS or CpG could lead to lower incidence
of tumors by 21 d.p.i. Other ligands also had some protective effects,
albeit at varying levels. For example, poly(I:C) and FimH were not as
effective as other ligands in reducing the tumor incidence, although
poly(I:C) can enhance the efficacy of vaccines against Marek’s dis-
ease [29]. The lack of efficacy in case of poly(I:C) and FimH could
be due to the route of administration or their dose. It is also possi-
ble that these ligands were degraded before interacting with their
receptors. Given the relatively potent effects of CpG and LPS at high
doses, these two  ligands were selected for the subsequent trial.

The results of the second trial further confirmed that treatment
of chickens with CpG and LPS via i.a.s. and I.M. routes prior to infec-
tion with MDV  delays disease onset in the treated chickens by 6 and
7 days, respectively, compared to the control groups.

To identify the immunological correlates of TLR ligand-
mediated effector functions, the expression of several cytokines
was measured in spleen and lungs. The expression of IFN-�, a type
I interferon, was  significantly up-regulated in LPS/RB1B group at 4
d.p.i. in the lungs. Triggering the TLR4-associated pathways elicits
the expression of type I IFNs, especially IFN-� [44]. Mammalian type
I IFNs have potent antiviral activity, increase the expression of TLRs
[34], and induce T helper (Th)1 immune response [8]. In chickens,
type I interferons also have anti-viral activities [36] and we have
recently shown that type I IFN genes are up-regulated at early hours
post-treatment with LPS in chickens [40]. Therefore, our observa-
tion of up-regulation of IFN-� at early time points in the lungs may
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Fig. 4. Relative expressions of IFN-� (a), IFN-� (b), IFN-� (c), IL-1� (d), IL-18 (e) in the spleen of birds from the second trial are shown. 4-day old birds were injected with
LPS  (500 �g/bird), CpG ODN (10 �g/bird), non-CpG ODN (10 �g/bird) or the diluent and were challenged with RB1B via respiratory route on day-5 post hatch, as described in
detail  in Section 2. On 14 d.p.i., chickens were treated with the same doses of TLR ligands intra-muscularly and the expression of cytokines was  calculated relative to �-actin.
Part  (f) demonstrates MDV  genome copy number in the spleens of the experimental groups. The data represent the mean of six biological replicates for each group at 4 and
10  d.p.i. “a” Denotes statistical significance compared to other groups at the same time point. “b” Denotes statistical significance for one group compared to other time points
for  the same group. Comparisons were considered significant p ≤ 0.05.

be an important contributing factor to host response generated by
LPS treatment. Furthermore, the up-regulation of type I IFN (at 4
d.p.i. in LPS/RB1B group) coincided with the early cytolytic phase
of MDV  in the lungs. Therefore, administration of LPS via the i.a.s.
route might play a role in eliminating MDV  viral particles. This is
indicated by the low MDV  genome copy number at 4 d.p.i., in the
lungs, which might have contributed to the delay in the manifes-
tation of clinical signs and pathologic lesions of MD.  There was,
however, no difference in type I IFN expression in spleen among
various groups. Our finding is supported by previous reports that
local delivery of TLR ligands does not result in measurable produc-
tion of type I IFN [14]. Moreover, absence of IFN-� secretion has
been reported in vaccinia virus infection, where TLR ligands were
used to confer protection [20].

Administration of CpG via the i.a.s. route had no effect on the
transcription of type I IFNs at 4 d.p.i. in the lungs or spleens. This
might have occurred due to several reasons. First, the expression
of TLR21 is very low in the lungs compared to other tissues [10].
Second, TLR21, similar to its mammalian counterpart TLR9, is an
intracellular receptor [10] which might have made it inaccessi-
ble for at least some of the administered CpG. And thirdly, the
half-life of CpG in vivo is short [26] due to its rapid degradation.
Finally, class B CpG that was used in our experiments is a poor
inducer of type I IFN [25]. On the other hand, non-CpG induced
the expression of type I IFNs and IFN-� in the lungs. Non-CpG also
induced the expression of inflammatory cytokines in spleen. The
immune stimulatory effects of non-CpG have been noted both in
B cells of mammals and chicken [37,47]. However, the induction

of IFNs and pro-inflammatory cytokines by non-CpG in our exper-
iments had no effect on MDV  genome load and onset of clinical
disease in this group. It is of note that in the context of influenza
virus, we have shown that non-CpG may  even have some protective
effects [41].

In addition to type I IFNs, IFN-� and pro-inflammatory cytokines
can play a pivotal role in elicitation of protective immune responses
against MDV  [15,17]. IFN-� could block MDV  replication via acti-
vation of immune system cells and production of NO [48] and
enhancement of cytotoxic T cell (CTL) responses [17]. Based on
our results, administration of LPS to birds resulted in a significant
increase in the expression of IFN-� in the lungs at 4 and 10 d.p.i.
and in spleen at 10 d.p.i. Administration of CpG to chickens also led
to a significant increase in IFN-� expression in the lungs at 4 and
10 d.p.i. Based on previous observations, CpG induces the expres-
sion of IFN-� [23] and elicits Th1immune responses in the mouse
model [49]. Taken together, induction of IFN-� expression by LPS
and CpG in the lungs and spleen may  play a role in the development
of protective immune responses against MDV.

Our results demonstrated that the administration of LPS and
CpG resulted in a significant increase in the expression of pro-
inflammatory cytokines, represented by IL-1� in both the lungs and
spleens of MDV-infected chickens. This is in agreement with the
results demonstrating that LPS and CpG stimulate the up-regulation
of pro-inflammatory cytokines in chicken cells in vitro [19]. IL-1�
is one of the early innate genes that is up-regulated in response
to MDV  infection. In fact, up-regulation of IL-1� has been noted in
the spleen and lungs of chickens infected with MDV  [2,48]. There
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is, however, little known about the importance of this cytokine in
immunity against MD.

In conclusion, administration of TLR agonists such as LPS and
CpG enhances immunity against MD.  Despite enhancement of
immunity, we determined that treatment with TLR agonists did not
reduce virus burden in feathers. This requires further investigation
and perhaps better formulations of TLR agonists and delivery sys-
tems need to be devised to induce immunity against disease and
also reduce virus load, especially in the feather.
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